Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 355: 120440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437740

RESUMO

The best solution to address environmental pollution caused by arsenic-containing hazardous waste is to prepare high-purity elemental arsenic from such waste. The key to this approach lies in the efficient separation of arsenic from various impurities. This paper presents a viable solution for producing high-purity elemental arsenic from arsenic-alkali slag, and the keylies in utilizing the selective precipitation of magnesium ammonium arsenate (MgNH4AsO4) to achieve efficient separation of arsenic from alkali, antimony, and other impurities. Thermodynamic analysis and hydrometallurgical condition experiments indicate that in complex alkaline arsenic-containing solutions, over 90% of arsenic components can selectively precipitate in the form of MgNH4AsO4. The content of arsenic in the resulting precipitate reaches approximately 30%, while the content of antimony is below 0.1%. This achieves efficient enrichment of arsenic and preliminary separation of impurities in complex arsenic-alkali slag. Thermodynamic analysis and pyrometallurgical condition experiments demonstrate that the precipitate of MgNH4AsO4 can be reduced to elemental arsenic with an arsenic content reaching 99.85%, and an antimony content as low as 0.05%. This achieves a profound separation of arsenic from impurities. Based on the research presented in this paper, a production line was established that enables the deep resource utilization of arsenic-alkali slag.


Assuntos
Arsênio , Arsênio/análise , Antimônio , Álcalis , Resíduos Industriais/análise
2.
J Environ Sci (China) ; 139: 293-307, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105056

RESUMO

Iron sulfide (FeS) is a promising material for separating copper and arsenic from strongly acidic wastewater due to its S2- slow-release effect. However, uncertainties arise because of the constant changes in wastewater composition, affecting the selection of operating parameters and FeS types. In this study, the aging method was first used to prepare various controllable FeS nanoparticles to weaken the arsenic removal ability without affecting the copper removal. Orthogonal experiments were conducted, and the results identified the Cu/As ratio, H2SO4 concentration, and FeS dosage as the three main factors influencing the separation efficiency. The backpropagation artificial neural network (BP-ANN) model was established to determine the relationship between the influencing factors and the separation efficiency. The correlation coefficient (R) of overall model was 0.9923 after optimizing using genetic algorithm (GA). The BP-GA model was also solved using GA under specific constraints, predicting the best solution for the separation process in real-time. The predicted results show that the high temperature and long aging time of FeS were necessary to gain high separation efficiency, and the maximum separation factor can reached 1,400. This study provides a suitable sulfurizing material and a set of methods and models with robust flexibility that can successfully predict the separation efficiency of copper and arsenic from highly acidic environments.


Assuntos
Arsênio , Cobre , Águas Residuárias , Inteligência Artificial
3.
Waste Manag ; 172: 290-298, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931548

RESUMO

Jarosite [MeFe3(SO4)2(OH)6] is a typical non-ferrous smelting slag produced in the process of iron removal from hydrometallurgical solution, which contains a large number of valuable and toxic metal elements. Treating the complex and hazardous jarosite residue in an economically and environmentally sound way has always been an urgent problem. A novel one-step hydrothermal treatment method was proposed in this paper for recycling of jarosite residues. It can be seen from the XRD and TEM results that jarosite residues could be completely transformed into hematite crystal particles under hydrothermal conditions at temperature above 220℃. Meanwhile, other valuable metal components (such as nickel sulfate hexahydrate) entrained in the residue will be dissolved in the aqueous solution, which can be reused in the hydrometallurgical process. Through phase composition analysis of the hydrothermal process, it is concluded that jarosite was firstly pyrolyzed to generate Fe3+. The obtained Fe3+ was then hydrolyzed to Fe (OH)3, which was transformed into Fe2O3 through dehydration condensation and directional arrangement. Further roasting the hematite particles, the obtained product contained 62.57 % of Fe, but only 0.21 % of S and 0.04 % of As, which meets the requirements of raw materials for iron making. In addition, compared with the current international standard ISO 1248:2006 (E), the obtained hematite particles with nanometer size and single crystal structure can be used as iron oxide red pigment. Overall, the one-step hydrothermal treatment of jarosite residues followed by reduction roasting not only realizes the economic recycling of the metal resources, but also solves the stacking problem of those hazardous residues.


Assuntos
Compostos Férricos , Sulfatos , Compostos Férricos/química , Sulfatos/química , Ferro/química , Metais
4.
J Environ Manage ; 344: 118462, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384991

RESUMO

Extensive research has been conducted on the separation and recovery of heavy metals from wastewater through the targeted precipitation of metal sulfides. It is necessary to integrate various factors to establish the internal correlation between sulfide precipitation and selective separation. This study provides a comprehensive review of the selective precipitation of metal sulfides, considering sulfur source types, operating factors, and particle aggregation. The controllable release of H2S from insoluble metal sulfides has garnered research interest due to its potential for development. The pH value and sulfide ion supersaturation are identified as key operational factors influencing selectivity precipitation. Effective adjustment of sulfide concentration and feeding rate can reduce local supersaturation and improve separation accuracy. The particle surface potential and hydrophilic/hydrophobic properties are crucial factors affecting particle aggregation, and methods to enhance particle settling and filtration performance are summarized. The regulation of pH and sulfur ion saturation also controls the zeta potential and hydrophilic/hydrophobic properties on the particles surface, thereby affecting particle aggregation. Insoluble sulfides can decrease sulfur ion supersaturation and improve separation accuracy, but they can also promote particle nucleation and growth by acting as growth platforms and reducing energy barriers. The combined influence of sulfur source and regulation factors is vital for achieving precise separation of metal ions and particle aggregation. Finally, suggestions and prospects are proposed for the development of agents, kinetic optimization, and product utilization to promote the industrial application of selective precipitation of metal sulfides in a better, safer, and more efficient way.


Assuntos
Metais Pesados , Águas Residuárias , Sulfetos/química , Enxofre , Precipitação Química
5.
J Environ Manage ; 340: 117983, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116419

RESUMO

In recent years, electrochemical oxidation (EO) shows the characteristics of green and high efficiency in removing chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) from wastewater, which has been favored by researchers. However, at present, most of current studies on EO remain in laboratory stage, reports about pilot-scale or even industrial tests with large treatment capacity are few, which slowing down the use of the advanced technology to practical application. In this study, bench-scale tests, pilot-scale tests (treatment capacity 200-500 L/h), and industrial tests (treatment capacity 100 m3/h) were carried out by EO technology in view of the characteristics of tungsten smelting wastewater (TSW) with high salinity (NaCl), COD, and NH3-N. Results showed that the removal of COD and NH3-N was a competitive reaction in the EO process, and COD could be removed more preferentially than NH3-N. When NH3-N content was low, the influent pH had a minimal effect on its removal, and when NH3-N content was high, increasing the influent pH was beneficial to its removal. Industrial tests showed that the one-step removal of COD and NH3-N in TSW met the standard, and the power consumption per cubic meter of wastewater was only 4.2 kW h, and the treatment cost was much lower than the two-step process of "breaking point chlorination to remove NH3-N and adding oxidant to remove COD". This study has successfully realized industrial application of EO technology in TSW treatment for the first time and provided a successful case, which is helpful to accelerate the popularization and application of this technology in the field of high salinity organic ammonia nitrogen wastewater treatment.


Assuntos
Amônia , Águas Residuárias , Amônia/análise , Tungstênio , Análise da Demanda Biológica de Oxigênio , Salinidade , Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos
6.
ACS Omega ; 7(43): 38700-38708, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340110

RESUMO

Liquid-liquid mixings in stirred tanks are commonly found in many industries. In this study, we performed computational fluid dynamics (CFD) modeling and simulation to investigate the liquid-liquid mixing behavior. Furthermore, the population balance model (PBM) was used to characterize the droplet size distribution. The PBM model parameters were calibrated using the experimental data of droplet sizes at different agitation speeds. Additionally, we employed the steady-state Sauter mean droplet size to validate the developed CFD-PBM coupled model at different dispersion phase holdups. Then, the validated CFD-PBM coupled model was employed to evaluate the role of impeller structural parameters on the liquid-liquid mixing efficiency based on a user-defined mixing index. It was found that the position of impellers significantly affects the mixing efficiency, and an increase in stirring speed and the number of impellers improved the mixing efficiency.

7.
Chemosphere ; 308(Pt 1): 136353, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36084831

RESUMO

Particulate matter (PM) pollution greatly endanger human physical and mental health, and it is of great practical significance to predict PM concentrations accurately. This study measured one-year monitoring data of six main meteorological parameters and PM2.5 concentrations independently at two monitoring sites in central China's Hunan Province. These datasets were then employed to train, validate, and evaluate the proposed extreme gradient boosting (XGBoost) machine learning model and the fully connected neural network deep learning model, respectively. The performances of the two models were compared, analyzed, and optimized through model parameter tuning. The XGBoost model had better prediction ability with R2 higher than 0.761 in the complete test dataset. When the complete dataset was divided into stratified sub-sets by daytime-nighttime periods, the value of R2 increased to 0.856 in the nighttime test dataset. The feature importance and influential mechanism of meteorological variables on PM2.5 concentrations were analyzed and discussed.


Assuntos
Poluentes Atmosféricos , Aprendizado Profundo , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Humanos , Aprendizado de Máquina , Material Particulado/análise
8.
Chemosphere ; 307(Pt 3): 135992, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35964730

RESUMO

The alkaline leaching process of arsenic-containing solid waste discharged during nonferrous metal smelting affords typical high-salinity alkaline arsenic-containing wastewater (HSAW). In this study, for the first time, Me (Ca2+ and Mg2+)-AsO43--OH--H2O and Me (Ca2+ and Mg2+)-AsO43--CO32--H2O systems are studied based on a thermodynamic equilibrium diagram and an arsenic removal experiment, proving that the removal of arsenic using single metal ions in the presence of CO32- is infeasible because of carbonate coprecipitation. Based on this observation, a new method that uses magnesium ammonium complex salts (MACSs) for HSAW treatment is proposed. Based on the thermodynamic calculations of the Mg2+-AsO43--NH4+-CO32--H2O system and the arsenic removal experiment, carbonate and arsenate can be selectively separated by the formation of magnesium ammonium arsenate (NH4MgAsO4·6H2O). In an arsenic solution containing 150-g/L Na2CO3, the arsenic removal rate and the arsenic grade of the precipitation product reach 90.16% and 27.13%, respectively, when the molar ratios of Mg2+/NH4+:As(V) are 1.8:1 and 2:1, respectively. The proposed method is successfully employed for treating a leaching solution of alkaline arsenic slag discharged during antimony smelting. The findings of this study will broaden the basic theory of HSAW treatment and lay a foundation for the resource treatment of arsenic-containing solid waste.


Assuntos
Compostos de Amônio , Arsênio , Antimônio , Arseniatos , Carbonatos , Magnésio , Salinidade , Sais , Resíduos Sólidos , Águas Residuárias
9.
Nanoscale Res Lett ; 16(1): 105, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34117941

RESUMO

In recent years, the development of lithium-ion batteries (LIBs) with high energy density has become one of the important research directions to fulfill the needs of electric vehicles and smart grid technologies. Nowadays, traditional LIBs have reached their limits in terms of capacity, cycle life, and stability, necessitating their further improvement and development of alternative materials with remarkably enhanced properties. A nitrogen-containing carbon nanotube (N-CNT) host for bimetallic sulfide (NiCo2S4) is proposed in this study as an anode with attractive electrochemical performance for LIBs. The prepared NiCo2S4/N-CNT nanocomposite exhibited improved cycling stability, rate performance, and an excellent reversible capacity of 623.0 mAh g-1 after 100 cycles at 0.1 A g-1 and maintained a high capacity and cycling stability at 0.5 A g-1. The excellent electrochemical performance of the composite can be attributed to the unique porous structure, which can effectively enhance the diffusivity of Li ions while mitigating the volume expansion during the charge-discharge processes.

10.
J Environ Manage ; 287: 112348, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33735678

RESUMO

Leaching arsenic from solid waste selectively and removing arsenic from alkaline leachate efficiently are two key points in alkali treatment of copper smelter dust, and the latter is challenging. In this study, composite salt precipitation of magnesium ammonium arsenate (NH4MgAsO4·6H2O), similar to magnesium ammonium phosphate (NH4MgPO4·6H2O), was proposed to solve the difficult problem of separation arsenic from alkali. Based on the thermodynamic analysis, the selective leaching of arsenic from copper smelting dust was carried out in the NaOH-Na2S system. In the alkali leaching system, more than 80% arsenic can be leached out from the dust with the diffusion-controlled type in the Avrami model, while the leaching rates of valuable metals are less than 0.5%. For the strong alkaline leachate containing arsenic obtained by alkali leaching, the selective removal of arsenic was achieved by adding magnesium salt and ammonium salt. With the change of the amount of magnesium salt and ammonium salt, the sedimentation performance and composition of the arsenic slag changed accordingly. At the mole ratio of NH4+: As = 8:1 and Mg2+: As = 1.5:1, 96.38% of arsenic was removed, and the content of arsenic in the arsenic slag composed of MgNH4AsO4·6H2O reached 28.96%. On this basis, the circulating alkali leaching of copper smelter dust based on arsenic-alkali separation was successfully carried out. The whole scheme is not only economical and safe, but also achieves the reuse of wastewater without secondary pollution, which provides an alternative solution for the treatment of arsenic containing solid waste.


Assuntos
Arsênio , Álcalis , Cobre , Poeira
11.
Nanomaterials (Basel) ; 10(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207623

RESUMO

A three-dimensionally ordered macroporous ZnO (3DOM ZnO) framework was synthesized by a template method to serve as a sulfur host for lithium-sulfur batteries. The unique 3DOM structure along with an increased active surface area promotes faster and better electrolyte penetration accelerating ion/mass transfer. Moreover, ZnO as a polar metal oxide has a strong adsorption capacity for polysulfides, which makes the 3DOM ZnO framework an ideal immobilization agent and catalyst to inhibit the polysulfides shuttle effect and promote the redox reactions kinetics. As a result of the stated advantages, the S/3DOM ZnO composite delivered a high initial capacity of 1110 mAh g-1 and maintained a capacity of 991 mAh g-1 after 100 cycles at 0.2 C as a cathode in a lithium-sulfur battery. Even at a high C-rate of 3 C, the S/3DOM ZnO composite still provided a high capacity of 651 mAh g-1, as well as a high areal capacity (4.47 mAh cm-2) under high loading (5 mg cm-2).

12.
J Hazard Mater ; 400: 123210, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32590131

RESUMO

Over 150 million tons of high-alkaline bauxite residue was produced during the Bayer process of Bauxite smelting in the world annually, causing massive encroachment and irreversible pollution of soil. In this work, we proposed a new way out of bauxite residue, synthesizing a micro-electrolysis composite material (MECM) by carbothermal reduction of the bauxite residue towards the degradation of high-concentration organic wastewater. Batch experiments of organic compounds degradation were conducted to evaluate the performance of MECM with or without synergistic Fenton process. XRD and SEM-EDS analysis results indicated that a proper calcination temperature (1000℃) could facilitate the generation and growth of zero-valent iron (ZVI), thereby forming a large number of galvanic cells with carbon, which could efficiently break the azo bonds. Additionally, the micro-electrolysis reaction of MECM could provide lots of Fe(Ⅱ), which constituted the Fenton system with the additional H2O2. In Fenton system, the aromatic rings and alkyl chains were further degraded and mineralized, which reduced the chemical oxygen demand (COD) of methyl orange (MO) from 450 to 54 mg/L. Therefore, the combination of the micro-electrolysis and Fenton process provides a clean and efficient method for the treatment of organic wastewater, which is a promising way out for bauxite residue.

13.
Materials (Basel) ; 13(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033276

RESUMO

An exceptionally high-strength rare-earth-free Mg-8Al-3Bi (AB83) alloy was successfully fabricated via extrusion and caliber rolling. After three-pass caliber rolling, the homogenous microstructure of the as-extruded AB83 alloy was changed to a necklace-like bimodal structure consisting of ultra-fine dynamic recrystallized (DRXed) grains and microscale deformed grains. Additionally, both Mg17Al12 and Mg3Bi2 nanoprecipitates, undissolved microscale Mg17Al12, and Mg3Bi2 particles were dispersed in the matrix of caliber-rolled (CRed) AB83 alloy. The CRed AB83 sample demonstrated a slightly weakened basal texture, compared with that of the as-extruded sample. Consequently, CRed AB83 showed a tensile yield strength of 398 MPa, an ultimate tensile strength of 429 MPa, and an elongation of 11.8%. The superior mechanical properties of the caliber-rolled alloy were mainly originated from the combined effects of the necklace-like bimodal microstructure containing ultra-fine DRXed grains, the homogeneously distributed nanoprecipitates and microscale particles, as well as the slightly modified basal texture.

14.
Sci Total Environ ; 705: 135816, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31972947

RESUMO

Pyrrhotite is a potential source of S2- for the sulfide precipitation of nonferrous metal ions in hydrometallurgy and waste water treatment. In this study, different pyrrhotite crystals were prepared using zero-valent iron and sulfur to determine the effects of the pyrrhotite's structure on the sulfide precipitation of copper ions. The results indicate that the sulfide precipitation of copper ions highly depends on the crystal structure and crystallinity of pyrrhotite. Monoclinic pyrrhotite was found to be the most effective for copper sulfide precipitation, which can be used for the selective precipitation of copper ions from arsenic wastewater. More than 96% copper ions were removed with little loss of arsenic, contributing to a copper product of 20.2% Cu and 0.7% As, which can serve as raw materials of copper metallurgy. X-ray diffraction analysis showed the presence of CuS and (CuxFe1-x)S, indicating that most copper ions precipitated as CuS and some copper ions entered the FeS lattice by a lattice substitution reaction. Therefore, monoclinic pyrrhotite may provide an alternative solution for the selective precipitation of copper from arsenic wastewater.

15.
J Colloid Interface Sci ; 562: 342-351, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-31855797

RESUMO

Lead(II)-benzohydroxamic acid (Pb-BHA) complex collectors perform well with respect to scheelite flotation, and, due to their structure, they are widely used for industrial purposes. This paper examines the controversial issue of whether "O, O" five-membered ring or "N, O" four-membered ring complexes are formed when BHA coordinates with Pb ions, with their structure being comprehensively studied from the aspect of colloid and interface science. The configurations of Pb-BHA complexes are examined in a solution and on a mineral surface with experimental and computational methods. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) revealed that the five-membered ring is the dominant form of Pb-BHA complexes in a solution, whereas four-membered ring complexes are the stronger electron acceptor of the two. Moreover, XPS and time-of-flight secondary ion mass spectrometry (TOF-SIMS) confirmed that the four-membered ring complexes are stable with respect to being adsorbed on the scheelite surface. Therefore, although the four-membered ring is not as stable as the five-membered ring in a solution, it offers advantages with respect to adsorption on an electron-rich mineral surface during short-flotation processes.

16.
Front Chem ; 7: 645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681725

RESUMO

Previous studies have shown that Pb-BHA complexes (lead complexes of benzohydroxamic acid) have better collecting ability and can be used in flotation experiments with BHA acting as a collector and lead ions acting as activators. However, the structures of Pb-BHA complexes adsorbed on a mineral surface remain unclear. In this work, the adsorption behavior of Pb-BHA complexes on the scheelite surface was studied by flotation experiments and adsorption capacity measurements, and the structures of the adsorbed Pb-BHA complexes were determined using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The adsorption capacity results showed that more BHA was adsorbed on the scheelite surface in Pb-BHA flotation, and the XPS and TOF-SIMS analysis showed that the species of Pb-BHA complexes adsorbed on the scheelite surface were similar in activation flotation and Pb-BHA flotation. Therefore, the different contents of the complexes on the scheelite surface were responsible for the flotation behavior. XPS and TOF-SIMS showed that BHA combined with lead ions to form complexes with different structures, such as five- and four-membered ring structures. Structure fragment inference based on the measurements indicated that lead ions formed monomer complexes with two BHAs, and that lead hydroxide polymers with a certain degree of polymerization bonded with oxygen atoms in the complexes. The Pb-BHA complexes combine with oxygen atoms on the scheelite surface to form an adsorbate, rendering the surface hydrophobic.

17.
Sci Total Environ ; 695: 133723, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31425986

RESUMO

Traditional chemical precipitation of phosphates from wastewater is somewhat inefficient because it produces some ultrafine hydroxyapatite particles that are difficult to settle. In this study, magnetic seeds with a core-shell structure were prepared by sulfation roasting for magnetic flocculation of those fine particles. Zeta potential measurements show that the hydroxyapatite particles are positively charged at pH 10, whereas the magnetic seeds are negatively charged. The Derjaguin-Landau-Verwey-Overbeek calculation indicates that the van der Waals force between the magnetic seeds and hydroxyapatite particles is always attractive. Moreover, the electrostatic attraction also contributes to aggregation of the magnetic seeds and hydroxyapatite particles. Orthogonal experiments show that the main factor affecting the magnetic flocculation is the dosage of magnetic seeds, and polymeric ferric sulfate also plays an important role. Under the optimal magnetic flocculation experimental conditions, the turbidity of wastewater after magnetic separation was only 16.388 NTU, contributing to the removal of phosphate contaminants. Therefore, magnetic flocculation and magnetic separation may provide an alternative solution for efficient purification of phosphate-containing wastewater.

18.
Nanoscale Res Lett ; 14(1): 176, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31140042

RESUMO

The practical application of lithium/sulfur (Li/S) batteries is hindered by the migration of soluble polysulfides (Li2Sn, 4 ≤ n ≤ 8) from cathode to anode, leading to poor electrochemical stability of the cell. To address this issue, in the present study, a TiO2/porous carbon (TiO2/PC) composite-coated Celgard 2400 separator was successfully fabricated and used as a polysulfide barrier for the Li/S battery. In TiO2/PC, the highly conductive PC with three-dimensional ordered porous structure physically constrains polysulfides and at the same time serves as an additional upper current collector. On the other hand, the TiO2 on the surface of PC chemically adsorbed polysulfides during the charge/discharge process. Due to the physical and chemical adsorption properties of TiO2/PC composite coating layer, an initial discharge capacity of 926 mAh g-1 at 0.1 C and a low fading rate (75% retention after 150 cycles) were achieved. Moreover, in the rate capability test, the discharge capacity for the TiO2/PC-modified Li/S battery was recovered to 728 mAh g-1 at 0.1 C after high-rate cycling and remained ~ 88% of the initial reversible capacity.

19.
J Environ Sci (China) ; 81: 4-16, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30975328

RESUMO

Core-shell magnetic seeds with certain adsorption capacity that were prepared by sulfated roasting, served as the core of a magnetic separation technology for purification of starch wastewater. XRD and SEM results indicate that magnetite's surface transformed to be porous α-Fe2O3 structure. Compared with magnetite particles, the specific surface area was significantly improved to be 8.361 from 2.591 m2/g, with little decrease in specific susceptibility. Zeta potential, FT-IR and XPS experiments indicate that both phosphate and starch adsorbed on the surface of the core-shell magnetic seeds by chemical adsorption, which fits well with the Langmuir adsorption model. The porous surface structure of magnetic seeds significantly contributes to the adsorption of phosphate and starch species, which can be efficiently removed to be 1.51 mg/L (phosphate) and 9.51 mg/L (starch) using magnetic separation.


Assuntos
Fósforo/análise , Amido/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Óxido Ferroso-Férrico/química , Magnetismo , Sulfatos/química
20.
J Colloid Interface Sci ; 529: 150-160, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29886227

RESUMO

Metal ions are commonly used as activators to improve the anionic collector flotation of oxide minerals with an accepted activation mechanism that the prior addition of metal ions can adsorb onto the oxide mineral surface to increase the number of active sites for subsequent attachment of a collector. The improved flotation of cassiterite (or scheelite) with the use of lead nitrate (LN) as the activator and benzohydroxamic acid (BHA) as the collector is a typical example. However, our recent research showed that a soluble metal-organic complex (lead-BHA complex) produced by pre-mixing LN and BHA further improved the collecting ability and selectivity in the flotation of cassiterite and for that, the existing activation mechanism cannot completely explain this further improved performance. We believe that the lead ion and its hydroxide species can directly interact with water molecules to form Pb(H2O)n2+ and Pb(OH)(H2O)n+ complexes in water solution, and those bonded water molecules will in turn affect the interaction of (hydroxide) lead ion with the cassiterite surface and the BHA. In this work, solution chemistry calculation was used to identify the major active components of the lead-BHA complex in water solution at different pH levels, and based on density functional theory, the adsorption energies of different activation mechanisms were calculated via accurate first-principle calculations, indicating a much stronger interaction of the adsorption of HO-Pb-BHA complex on cassiterite surface (-48.11 kcal/mol) compared with that of the sequential adsorption of Pb(OH)(H2O)5+ and BHA anion (-13.29 kcal/mol) at optimal flotation pH 8-9. That is, the difference in two activation systems can be explained based on thermodynamics. With such, a new hypothetic activation model was proposed to explain the improved performance of soluble lead-BHA complex and then, the proposed model was verified by the flotation experiment and adsorption test results. This work can help enrich the activation theory of metal ions in anionic collector flotation of minerals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...